Free Book—Statistical Thinking: A Simulation Approach to Modeling Uncertainty

CATALST-Textbook-Cover-v2

Catalyst Press has just released the second edition of the book Statistical Thinking: A Simulation Approach to Modeling Uncertainty. The material in the book is based on work related to the NSF-funded CATALST Project (DUE-0814433). It makes exclusive use of simulation to carry out inferential analyses. The material also builds on best practices and materials developed in statistics education, research and theory from cognitive science, as well as materials and methods that are successfully achieving parallel goals in other disciplines (e.g., mathematics and engineering education).

The materials in the book help students:

  • Build a foundation for statistical thinking through immersion in real world problems and data
  • Develop an appreciation for the use of data as evidence
  • Use simulation to address questions involving statistical inference including randomization tests and bootstrap intervals
  • Model and simulate data using TinkerPlots™ software

Why a cook on a statistics book? It is symbolic of a metaphor introduced by Alan Schoenfeld (1998) that posits many introductory (statistics) classes teach students how to follow “recipes”, but not how to really “cook.” That is, even if students leave a class able to perform routine procedures and tests, they do not have the big picture of the statistical process that will allow them to solve unfamiliar problems and to articulate and apply their understanding. Someone who knows how to cook knows the essential things to look for and focus on, and how to make adjustments on the fly. The materials in this book were intended to help teach students to “cook” (i.e., do statistics and think statistically).

The book is licensed under Creative Commons and is freely available on gitHub. If physical copies of the book are preferred, those are available for $45 at CreateSpace (or Amazon) in full color. All royalties from the book are donated to the Educational Psychology department at the University of Minnesota.