City Hall and Data Hunting

The L.A. Times had a nice editorial on Thursday (Oct 30) encouraging City Hall to make its data available to the public.  As you know, fellow Citizens, we’re all in favor of making data public, particularly if the public has already picked up the bill and if no individual’s dignity will be compromised.  For me this editorial comes at a time when I’ve been feeling particularly down about the quality of public data.  As I’ve been looking around for data to update my book and for the Mobilize project, I’m convinced that data are getting harder, and not easier. to find.

More data sources are drying up, or selling their data, or using incredibly awkward means for displaying their public data.  A basic example is to consider how much more difficult it is to get, say, a sample of household incomes from various states for 2010 compared to the 2000 census.

Another example is gasbuddy.com, which has been one of my favorite classroom examples.  (We compare the participatory data in gasbuddy.com, which lists prices for individual stations across the U.S., with the randomly sampled data the federal government provides, which gives mean values for urban districts. One data set gives you detailed data, but data that might not always be trustworthy or up-to-date. The other is highly trustworthy, but only useful for general trends and not for, say, finding the nearest cheapest gas. )  Used to be you could type in a zip code and have access to a nice data set that showed current prices, names and locations of gas stations, dates of the last reported price, and the username of the person who reported the price.  Now, you can scroll through an unsorted list of cities and states and get the same information only for the 15 cheapest and most expensive stations.

About 2 years ago I downloaded a very nice, albeit large, data set that included annual particulate matter ratings for 333 major cities in the US.  I’ve looked and looked, but the data.gov AirData site now requires that I enter the name of each city in one at a time, and download very raw data for each city separately.  Now raw data are good things, and I’m glad to see it offered. But is it really so difficult to provide some common sensically aggregated data sets?

One last example:  I stumbled across this lovely website, wildlife crossing, which uses participatory sensing to maintain a database of animals killed at road crossings.  Alas, this apparently very clean data set is spread across 479 separate screens.  All it needs is a “download data” button to drop the entire file onto your hard disk, and they could benefit from many eager statisticians and wildlife fans examining their data.  (I contacted them and suggested this, and they do seem interested in sharing the data in its entirety. But it is taking some time.)

I hope Los Angeles, and all governments, make their public data public. But I hope they have the budget and the motivation to take some time to think about making it accessible and meaningful, too.

Warning: Mac OS 10.9 Mavericks and R Don’t Play Nicely

For some reason I was compelled to update my Mac’s OS and R on the same day. (I know…) It didn’t go well on several accounts and I mostly blame Apple. Here are the details.

  • I updated R to version 3.0.2 “Frisbee Sailing”
  • I updated my OS to 10.9 “Mavericks”

When I went to use R things were going fine until I mistyped a command. Rather than giving some sort of syntax error, R responded with,

> *** caught segfault *** 
> address 0x7c0, cause 'memory not mapped' 
> 
> Possible actions: 
> 1: abort (with core dump, if enabled) 
> 2: normal R exit 
> 3: exit R without saving workspace 
> 4: exit R saving workspace 
> Selection:

Unlike most of my experiences with computing, this I was able to replicate many times. After a day of panic and no luck on Google, I was finally able to find a post on one of the Google Groups from Simon Urbanek responding to someone with a similar problem. He points out that there are a couple of solutions, one of which is to wait until Apple gets things stabilized. (This is an issue since if you have ever tried to go back to a previous OS on a Mac, you will know that this might take several days of pain and swearing.)

The second solution he suggests is to install the nightly build or rebuild the GUI. To install the nightly build visit the R  for Mac OS X Developer’s page. Or, in Terminal issue the following commands,

svn co https://svn.r-project.org/R-packages/trunk/Mac-GUI 
cd Mac-GUI 
xcodebuild -configuration Debug 
open build/Debug/R.app

I tried both and this worked fine…until I needed to load a package. Then I was given an error that the package couldn’t be found. Now I realize that you can download the packages you need from source and compile them yourself, but I was trying to figure out how to deal with students who were in a similar situation. (This is not an option for most social science students.)

The best solution it turned out is to use RStudio, which my students pretty much all use anyway. (My problem is that I am a Sublime Text 2 user.) This allowed the newest version of R to run on the new Mac OS. But, as is pointed out on the RStudio blog,

As a result of a problem between Mavericks and the user interface toolkit underlying RStudio (Qt) the RStudio IDE is very slow in painting and user interactions  when running under Mavericks.

I re-downloaded the latest stable release of the R GUI about an hour ago, and so far it seems to be working fine with Mavericks (no abort message yet), so this whole post may be moot.

Community Colleges and the ASA

Rob will be be participating in this event, organized by Nicholas Horton:

CONNECTION WITH COMMUNITY COLLEGES: second in the guidelines for undergraduate statistics programs webinar series

The American Statistical Association endorses the value of undergraduate programs in statistical science, both for statistical science majors and for students in other majors seeking a minor or concentration. Guidelines for such programs were promulgated in 2000, and a new workgroup is working to update them.

To help gather input and identify issues and areas for discussion, the workgroup has organized a series of webinars to focus on different issues.

Connection with Community Colleges
Monday, October 21st, 6:00-6:45pm Eastern Time

Description: Community colleges serve a key role in the US higher education system, accounting for approximately 40% of all enrollments. In this webinar, representatives from community colleges and universities with many community college transfers will discuss the interface between the systems and ways to prepare students for undergraduate degrees and minors in statistics.

The webinar is free to attend, and a recording will be made available after the event.  To sign up, please email Rebecca Nichols (rebecca@amstat.org).

More information about the existing curriculum guidelines as well as a survey can be found at:

http://www.amstat.org/education/curriculumguidelines.cfm

Crime data and bad graphics

I’m working on the 2nd edition of our textbook, Gould & Ryan, and was looking for some examples of bad statistical graphics.  Last time, I used FBI data and created a good and bad graphic from the data. This time, I was pleased to see that the FBI provided its own bad graphic.fbi crime bad graph

This shows a dramatic decrease in crime over the last 5 years.  (Not sure why 2012 data aren’t yet available.) Of course, this graph is only a bad graph if the purpose is to show the rate of decrease.  If you look at it simply as a table of numbers, it is not so bad.

Here’s the graph on the appropriate scale.

fbi crimes improved

Still, a decrease worth bragging about.  But, alas, somewhat less dramatic.

Statistics, the government shutdown, and causality.

There’s a  statistical meme that is making its way into pundits’ discussions (as we might politely call them) that is of interest to statistics educators.  There are several variations, but the basic theme is this:  because of the government shutdown, people are unable to benefit from the new drugs they receive by participating in clinical trials.  The L.A Times went so far as to publish an editorial from a gentleman who claimed that he was cured by his participation in a clinical trial.

Now if they had said that future patients are prevented from benefiting from what is learned from a clinical trial, then they’d nail it.  Instead, they seem to be overlooking the fact that some patients will be randomized to the control group, and probably get the same treatment as if there were no trial at all.  And in many trials (a majority?), the result will be that the experimental treatment had little or no effect beyond the traditional treatment.  And in a very small number of cases, the experimental effect will be found to have serious side effects.  And so the pundits should really be telling us that the government shutdown prevents patients from a small probability of a benefitting from experimental treatment.

All snarkiness aside, I think the prevalence of this meme points to the subtleties of interpreting probabilistic experiments, in which outcomes contain much variability, and so conclusions must be stated in terms of group characteristics.  This came out in the SRTL discussion in Minnesota this summer, when Maxinne Pfannkuch, Pip Arnold, and Stephanie Budgett at the University of Auckland  presented their work leading towards a framework for describing students’ understanding of causality.  I don’t remember very well the example they used, but it was similar to this (and was a real-life study):   patients were randomized to receive either fish oil or vegetable oil in their diet.  The goal of the study was to determine if fish oil lowered cholesterol.  At the end of the study, the fish oil group had a slightly lower average cholesterol levels.  A typical interpretation was, “If I take fish oil, my cholesterol will go down.”

One problem with this interpretation is that it ignored the within-group variation.  Some of patients in the fish oil group saw their cholesterol go up; some saw little or no change.  The study’s conclusion is about group means, not about individuals.  (There were other problems, too.  This interpretation ignores the existence of the control group: we don’t really know if fish oil improves cholesterol compared to your current diet; we know only that it tends to go down in comparison to a vegetable-oil diet.  Also, we know the effects only for those who participated in the study. We assume they were not special people, but possibly the results won’t hold for other groups.)

Understanding causality in probabilistic settings (or any setting) is a challenge for young students and even adults.  I’m very excited to see such a distinguished group of researchers begin  to help us understand.  Judea Pearl, at UCLA, has done much to encourage statisticians to think about the importance of teaching causal inference.  Recently, he helped the American Statistical Association establish the Causality in Statistics Education prize, won this year by Felix Elwert, a sociologist at the University of Wisconsin-Madison.  We still have a ways to go before we understand how to best teach this topic at the undergraduate level and even further before we understand how to teach it at earlier levels.  But, as the government shut down has shown, understanding probabilistic causality is an important component of statistical literacy.