Increasing the Numbers of Females in STEM

I just read a wonderful piece written about how the Harvey Mudd increased the ratio of females declaring a major in Computer Science from 10% to 40% since 2006. That is awesome!

One of the things that they attribute this success to is changing the name of their introductory course. They renamed the course from Introduction to programming in Java to Creative Approaches to Problem Solving in Science and Engineering using Python.

Now, clearly, they changed the language they were using (literally) as well,from Java to Python, but it does beg the question, “what’s in a name?” According to Jim Croce and Harvey Mudd, a lot. If you don’t believe that, just ask anyone who has been in a class with the moniker Data Science, or any publisher who has published a book recently entitled [Insert anything here] Using R.

It would be interesting to study the effect of changing a course name. Are there words or phrases that attract more students to the course (e.g., creative, problem solving)?  Are there gender differences? How long does the effect last? Is it a flash-in-the-pan? Or does it continue to attract students after a short time period? (My guess is that the teacher plays a large role in the continued attraction of students to the course.)

Looking at the effects of a name is not new. Stephen Dubner and Steve Levitt of Freakonomics fame have illuminated folks about research about whether a child’s name has an effect on a variety of outcomes such as educational achievement and future income [podcast], and suggest that it isn’t as predictive as some people believe. Perhaps someone could use some of their ideas and methods to examine the effect of course names.

Has anyone tried this with statistics (aside from Data Science)? I know Harvard put in place a course called Real Life Statistics: Your Chance for Happiness (or Misery) which got good numbers of students (and a lot of press). My sense is that this happens much more in liberal arts schools (David Moore’s Concepts and Controversies book springs to mind). What would good course words or phrases for statistics include? Evidence. Uncertainty. Data. Variation. Visualization. Understanding. Although these are words that statisticians use constantly, I have to admit they all sound better than An Introduction to Statistics.

 

Conditional probabilities and kitties

I was at the vet yesterday, and just like with any doctor’s visit experience, there was a bit of waiting around — time for re-reading all the posters in the room.

vodka

And this is what caught my eye on the information sheet about feline heartworm (I’ll spare you the images):

cond

The question asks: “My cat is indoor only. Is it still at risk?”

The way I read it, this question is asking about the risk of an indoor only cat being heartworm positive. To answer this question we would want to know P(heartworm positive | indoor only).

However the answer says: “A recent study found that 27% of heartworm positive cats were identified as exclusively indoor by their owners”, which is P(indoor only | heartworm positive) = 0.27.

Sure, this gives us some information, but it doesn’t actually answer the original question. The original question is asking about the reverse of this conditional probability.

When we talk about Bayes’ theorem in my class and work through examples about sensitivity and specificity of medical tests, I always tell my students that doctors are actually pretty bad at these, looks like I’ll need to add vets to my list too!

The Future of Inference

We had an interesting departmental seminar last week, thanks to our post-doc Joakim Ekstrom, that I thought would be fun to share.  The topic was The Future of Statistics discussed by a panel of three statisticians.  From left to right in the room: Songchun Zhu (UCLA Statistics), Susan Paddock (RAND), and Jan DeLeeuw (UCLA Statistics).  The panel was asked about the future of inference: waxing or waning.

The answers spanned the spectrum from “More” to “Less” and did so, interestingly enough, as one moved left to right in order of seating.  Songchun staked a claim for waxing, in part because  he knows of groups that are hiring statisticians instead of computer scientists because statisticians’ inclination to cast problems in an inferential context makes them more capable of finding conclusions in data, and not simply presenting summaries and visualizations.  Susan felt that it was neither waxing nor waning, and pointed out that she and many of the statisticians she knows spend much of their time doing inference.  Jan said that inference as an activity belongs in the substantive field that raised the problem.  Statisticians should not do inference.  Statisticians might, he said, design tools to help specialists have an easier time doing inference. But the inferential act itself requires intimate substantive knowledge, and so the statistician can assist, but not do.

I think one reason that many stats educators might object to this because its hard to think of how else to fill the curriculum.  That might have been an issue when most students took a single Introductory course in their early twenties and then never saw statistics again.  But now we must think of the long game, and realize that students begin learning statistics early.  The Common Core stakes out one learning pathway, but we should be looking ahead, and thinking of future curricula, since the importance of statistics will grow.

If statistics is the science of data, I suggest we spend more time thinking about how to teach students to behave more like scientists.  And this means thinking seriously about how we can  develop their sense of curiosity.  The Common Core introduces the notion of a ‘statistical question’– a question that recognizes variability.  To the statisticians reading this, this needs no more explanation.  But I’ve found it surprisingly difficult to teach this practice to math teachers teaching statistics.  I’m not sure, yet, why this is.  Part of the reason might be that in order to answer a statistical question such as “What is the most popular favorite color in this class” we must ask the non-statistical question “What is your favorite color.”  But there’s more to it than that.  A good statistical question isn’t as simple as the one I mentioned, and leads to discovery beyond the mere satisfaction of curiosity.  I’m reminded of the Census at Schools program that encouraged students to become Data Detectives.

In short, its time to think seriously about teaching students why they should want to do data analysis.  And if we’re successful, they’ll want to learn how to do inference.

So what role does inference play in your Ideal Statistics Curriculum?

City Hall and Data Hunting

The L.A. Times had a nice editorial on Thursday (Oct 30) encouraging City Hall to make its data available to the public.  As you know, fellow Citizens, we’re all in favor of making data public, particularly if the public has already picked up the bill and if no individual’s dignity will be compromised.  For me this editorial comes at a time when I’ve been feeling particularly down about the quality of public data.  As I’ve been looking around for data to update my book and for the Mobilize project, I’m convinced that data are getting harder, and not easier. to find.

More data sources are drying up, or selling their data, or using incredibly awkward means for displaying their public data.  A basic example is to consider how much more difficult it is to get, say, a sample of household incomes from various states for 2010 compared to the 2000 census.

Another example is gasbuddy.com, which has been one of my favorite classroom examples.  (We compare the participatory data in gasbuddy.com, which lists prices for individual stations across the U.S., with the randomly sampled data the federal government provides, which gives mean values for urban districts. One data set gives you detailed data, but data that might not always be trustworthy or up-to-date. The other is highly trustworthy, but only useful for general trends and not for, say, finding the nearest cheapest gas. )  Used to be you could type in a zip code and have access to a nice data set that showed current prices, names and locations of gas stations, dates of the last reported price, and the username of the person who reported the price.  Now, you can scroll through an unsorted list of cities and states and get the same information only for the 15 cheapest and most expensive stations.

About 2 years ago I downloaded a very nice, albeit large, data set that included annual particulate matter ratings for 333 major cities in the US.  I’ve looked and looked, but the data.gov AirData site now requires that I enter the name of each city in one at a time, and download very raw data for each city separately.  Now raw data are good things, and I’m glad to see it offered. But is it really so difficult to provide some common sensically aggregated data sets?

One last example:  I stumbled across this lovely website, wildlife crossing, which uses participatory sensing to maintain a database of animals killed at road crossings.  Alas, this apparently very clean data set is spread across 479 separate screens.  All it needs is a “download data” button to drop the entire file onto your hard disk, and they could benefit from many eager statisticians and wildlife fans examining their data.  (I contacted them and suggested this, and they do seem interested in sharing the data in its entirety. But it is taking some time.)

I hope Los Angeles, and all governments, make their public data public. But I hope they have the budget and the motivation to take some time to think about making it accessible and meaningful, too.

Crime data and bad graphics

I’m working on the 2nd edition of our textbook, Gould & Ryan, and was looking for some examples of bad statistical graphics.  Last time, I used FBI data and created a good and bad graphic from the data. This time, I was pleased to see that the FBI provided its own bad graphic.fbi crime bad graph

This shows a dramatic decrease in crime over the last 5 years.  (Not sure why 2012 data aren’t yet available.) Of course, this graph is only a bad graph if the purpose is to show the rate of decrease.  If you look at it simply as a table of numbers, it is not so bad.

Here’s the graph on the appropriate scale.

fbi crimes improved

Still, a decrease worth bragging about.  But, alas, somewhat less dramatic.

Statistics, the government shutdown, and causality.

There’s a  statistical meme that is making its way into pundits’ discussions (as we might politely call them) that is of interest to statistics educators.  There are several variations, but the basic theme is this:  because of the government shutdown, people are unable to benefit from the new drugs they receive by participating in clinical trials.  The L.A Times went so far as to publish an editorial from a gentleman who claimed that he was cured by his participation in a clinical trial.

Now if they had said that future patients are prevented from benefiting from what is learned from a clinical trial, then they’d nail it.  Instead, they seem to be overlooking the fact that some patients will be randomized to the control group, and probably get the same treatment as if there were no trial at all.  And in many trials (a majority?), the result will be that the experimental treatment had little or no effect beyond the traditional treatment.  And in a very small number of cases, the experimental effect will be found to have serious side effects.  And so the pundits should really be telling us that the government shutdown prevents patients from a small probability of a benefitting from experimental treatment.

All snarkiness aside, I think the prevalence of this meme points to the subtleties of interpreting probabilistic experiments, in which outcomes contain much variability, and so conclusions must be stated in terms of group characteristics.  This came out in the SRTL discussion in Minnesota this summer, when Maxinne Pfannkuch, Pip Arnold, and Stephanie Budgett at the University of Auckland  presented their work leading towards a framework for describing students’ understanding of causality.  I don’t remember very well the example they used, but it was similar to this (and was a real-life study):   patients were randomized to receive either fish oil or vegetable oil in their diet.  The goal of the study was to determine if fish oil lowered cholesterol.  At the end of the study, the fish oil group had a slightly lower average cholesterol levels.  A typical interpretation was, “If I take fish oil, my cholesterol will go down.”

One problem with this interpretation is that it ignored the within-group variation.  Some of patients in the fish oil group saw their cholesterol go up; some saw little or no change.  The study’s conclusion is about group means, not about individuals.  (There were other problems, too.  This interpretation ignores the existence of the control group: we don’t really know if fish oil improves cholesterol compared to your current diet; we know only that it tends to go down in comparison to a vegetable-oil diet.  Also, we know the effects only for those who participated in the study. We assume they were not special people, but possibly the results won’t hold for other groups.)

Understanding causality in probabilistic settings (or any setting) is a challenge for young students and even adults.  I’m very excited to see such a distinguished group of researchers begin  to help us understand.  Judea Pearl, at UCLA, has done much to encourage statisticians to think about the importance of teaching causal inference.  Recently, he helped the American Statistical Association establish the Causality in Statistics Education prize, won this year by Felix Elwert, a sociologist at the University of Wisconsin-Madison.  We still have a ways to go before we understand how to best teach this topic at the undergraduate level and even further before we understand how to teach it at earlier levels.  But, as the government shut down has shown, understanding probabilistic causality is an important component of statistical literacy.

Thinking with technology

Just finished a stimulating, thought-provoking week at SRTL —Statistics Research Teaching and Learning conference–this year held in Two Harbors Minnesota, right on Lake Superior. SRTL gathers statistics education researchers, most of whom come with cognitive or educational  psychology credentials, every two years. It’s more of a forum for thinking and collaborating than it is a platform for  presenting findings, and this means there’s much lively, constructive discussion about works in progress.

I had meant to post my thoughts daily, but (a) the internet connection was unreliable and (b) there was just too much too digest. One  recurring theme that really resonated with me was the ways students interact with technology when thinking about statistics.
Much of the discussion centered on young learners, and most of the researchers — but not all — were in classrooms in which the students used TinkerPlots 2.  Tinkerplots is a dynamic software system that lets kids build their own chance models. (It also lets them build their own graphics more-or-less from scratch.) They do this by either dropping “balls” into “urns” and labeling the balls with characteristics, or through spinners which allow them to shade different areas different colors. They can connect series of spinners and urns in order to create sequences of independent or dependent events, and can collect outcomes of their trials. Most importantly, they can carry out a large number of trials very quickly and graph the results.

What I found fascinating was the way in which students would come to judgements about situations, and then build a model that they thought would “prove” their point. After running some trials, when things didn’t go as expected, they would go back and assess their model. Sometimes they’d realize that they had made a mistake, and they’d fix it. Other times, they’d see there was no mistake, and then realize that they had been thinking about it wrong.Sometimes, they’d come up with explanations for why they had been thinking about it incorrectly.

Janet Ainley put it very succinctly. (More succinctly and precisely than my re-telling.)  This technology imposes a sort of discipline on students’ thinking. Using the  technology is easy enough  that they can be creative, but the technology is rigid enough that their mistakes are made apparent.  This means that mistakes are cheap, and attempts to repair mistakes are easily made.  And so the technology itself becomes a form of communication that forces students into a level of greater precision than they can put in words.

I suppose that mathematics plays the same role in that speaking with mathematics imposes great precision on the speaker.  But that language takes time to learn, and few students reach a level of proficiency that allows them to use the language to construct new ideas.  But Tinkerplots, and software like it, gives students the ability to use a language to express new ideas with very little expertise.  It was impressive to see 15-year-olds build models that incorporated both deterministic trends and fairly sophisticated random variability.  More impressive still, the students were able to use these models to solve problems.  In fact, I’m not sure they really know they were building models at all, since their focus was on the problem solving.

Tinkerplots is aimed at a younger audience than the one I teach.  But for me, the take-home message is to remember that statistical software isn’t simply a tool for calculation, but a tool for thinking.

Paint and Patch

IMG_0591

The other day I was painting the trim on our house and it got me reminiscing. The year was 2005. The conference was JSM. The location was Minneapolis. I had just finished my third year of graduate school and was slotted to present in a Topic Contributed session at my first JSM. The topic was Implementing the GAISE Guidelines in College Statistics Courses. My presentation was entitled, Using GAISE to Create a Better Introductory Statistics Course.

We had just finished doing a complete course revision for our undergraduate course based on the work we had been doing with our NSF-funded Adapting and Implementing Innovative Material in Statistics (AIMS) project. We had rewritten the entire curriculum, including all of our assessments and course activities.

The discussant for the session was Robin Lock. In his remarks about the presentations, Lock compared the re-structuring of a statistics course to the remodeling of a house. He described how some teachers restructure their courses according to a plan doing a complete teardown and rebuild. He brought the entire room to laughter as he described most teachers’ attempts, however, as “paint and patch,” fixing a few things that didn’t work quite so well, but mostly just sprucing things up.

The metaphor works. I have been thinking about this for the last eight years. Sometimes paint-and-patch is exactly what is needed. It is pretty easy and not very time consuming. On the other hand, if the structure underneath is rotten, no amount of paint-and-patch is going to work. There are times when it is better to tear down and rebuild.

As another academic year approaches, many of us are considering the changes to be made in courses we will soon be teaching. Is it time for a rebuild? Or will just a little touch-up do the trick?